You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
contrib-snufflings/cc_relocation.py

604 lines
20 KiB
Python

from __future__ import print_function
from builtins import range
import numpy as num
import logging, math
from pyrocko.gui.snuffling import Snuffling, Param, Switch, NoViewerSet, Choice
from pyrocko.gui.pile_viewer import Marker, EventMarker, PhaseMarker
from pyrocko.trace import Trace
from pyrocko import io, trace, util, cake, orthodrome, model
from pyrocko.dataset import crust2x2
km = 1000.
d2r = math.pi / 180.
class CorrelateEvents(Snuffling):
def setup(self):
self.set_name('Cross correlation relocation')
self.add_parameter(Param('Highpass [Hz]', 'corner_highpass', 1.0,
0.001, 50., low_is_none=True))
self.add_parameter(Param('Lowpass [Hz]', 'corner_lowpass', 4.0,
0.001, 50., high_is_none=True))
self.add_parameter(Param('Time window begin', 'tstart', -1.0,
-100., 0.))
self.add_parameter(Param('Time window end', 'tend', 3.0,
0., 100.))
self.add_parameter(Param('Minimum correlation', 'min_corr', 0.5,
0.0, 1.0))
self.add_parameter(Param('Replace master depth [km]', 'master_depth_km', None,
0.0, 100., high_is_none=True))
self.add_parameter(Switch('Save figure', 'save', False))
self.add_parameter(Switch('Fix depth', 'fix_depth', False))
self.add_parameter(Switch('Show correlation traces', 'show_correlation_traces', False))
self.add_parameter(Choice('Weighting', 'weighting', 'cubic',
['equal', 'linear', 'quadratic']))
self.add_parameter(Choice('Earth model', 'model_select', 'Global',
['Global (ak135)', 'Local (from crust2x2)']))
self.set_live_update(False)
self.model = None
self.model_key = None
def call(self):
self.cleanup()
viewer = self.get_viewer()
master = viewer.get_active_event()
if master is None:
self.fail('no master event selected')
stations = list(viewer.stations.values())
stations.sort(key=lambda s: (s.network,s.station))
if not stations:
self.fail('no station information available')
# gather events to be processed
events = []
for m in viewer.markers:
if isinstance(m, EventMarker):
if m.kind == 0:
events.append( m.get_event() )
events.sort(key=lambda ev: ev.time)
event_to_number = {}
for iev, ev in enumerate(events):
event_to_number[ev] = iev
if self.model_select.startswith('Global'):
model_key = 'global'
else:
model_key = master.lat, master.lon
if model_key != self.model_key:
if self.model_select.startswith('Global'):
self.model = cake.load_model()
else:
latlon = master.lat, master.lon
profile = crust2x2.get_profile(*latlon)
profile.set_layer_thickness(crust2x2.LWATER, 0.0)
self.model = cake.LayeredModel.from_scanlines(
cake.from_crust2x2_profile(profile))
self.model_key = model_key
phases = {
'P': ([ cake.PhaseDef(x) for x in 'P p'.split() ], 'Z'),
'S': ([ cake.PhaseDef(x) for x in 'S s'.split() ], 'NE'),
}
phasenames = list(phases.keys())
phasenames.sort()
# synthetic arrivals and ray geometry for master event
master_depth = master.depth
if self.master_depth_km is not None:
master_depth = self.master_depth_km * km
tt = {}
g = {}
for iphase, phasename in enumerate(phasenames):
for istation, station in enumerate(stations):
dist = orthodrome.distance_accurate50m(master, station)
azi = orthodrome.azimuth(master, station)
arrivals = self.model.arrivals(
phases=phases[phasename][0],
distances=[ dist*cake.m2d ],
zstart = master_depth,
zstop = 0.0)
if arrivals:
first = arrivals[0]
tt[station.network, station.station, phasename] = first.t
takeoff = first.takeoff_angle()
u = first.path.first_straight().u_in(first.endgaps)
g[iphase, istation] = num.array([
math.cos(azi*d2r) * math.sin(takeoff*d2r) * u,
math.sin(azi*d2r) * math.sin(takeoff*d2r) * u,
math.cos(takeoff*d2r) * u ])
# gather picks for each event
for ev in events:
picks = {}
for m2 in viewer.markers:
if isinstance(m2, PhaseMarker) and m2.kind == 0:
if m2.get_event() == ev:
net, sta, _, _ = m2.one_nslc()
picks[net,sta,m2.get_phasename()] = (m2.tmax + m2.tmin) / 2.0
ev.picks = picks
# time corrections for extraction windows
dataobs = []
datasyn = []
for phasename in phasenames:
for station in stations:
nsp = station.network, station.station, phasename
datasyn.append(tt.get(nsp,None))
for ev in events:
if nsp in ev.picks:
ttobs = ev.picks[nsp] - ev.time
else:
ttobs = None
dataobs.append(ttobs)
ttsyn = num.array(datasyn, dtype=num.float).reshape((
len(phasenames),
len(stations)))
ttobs = num.array(dataobs, dtype=num.float).reshape((
len(phasenames),
len(stations),
len(events)))
ttres = ttobs - ttsyn[:,:,num.newaxis]
tt_corr_event = num.nansum( ttres, axis=1) / \
num.nansum( num.isfinite(ttres), axis=1 )
tt_corr_event = num.where(num.isfinite(tt_corr_event), tt_corr_event, 0.)
ttres -= tt_corr_event[:,num.newaxis,:]
tt_corr_station = num.nansum( ttres, axis=2) / \
num.nansum( num.isfinite(ttres), axis=2 )
tt_corr_station = num.where(num.isfinite(tt_corr_station), tt_corr_station, 0.)
ttres -= tt_corr_station[:,:, num.newaxis]
tevents_raw = num.array( [ ev.time for ev in events ] )
tevents_corr = tevents_raw + num.mean(tt_corr_event, axis=0)
# print timing information
print('timing stats')
for iphasename, phasename in enumerate(phasenames):
data = []
for ev in events:
iev = event_to_number[ev]
for istation, station in enumerate(stations):
nsp = station.network, station.station, phasename
if nsp in tt and nsp in ev.picks:
tarr = ev.time + tt[nsp]
tarr_ec = tarr + tt_corr_event[iphasename, iev]
tarr_ec_sc = tarr_ec + tt_corr_station[iphasename, istation]
tobs = ev.picks[nsp]
data.append((tobs-tarr, tobs-tarr_ec, tobs-tarr_ec_sc))
if data:
data = num.array(data, dtype=num.float).T
print('event %10s %3s %3i %15.2g %15.2g %15.2g' % (
(ev.name, phasename, data.shape[1]) +
tuple( num.mean(num.abs(x)) for x in data )))
else:
print('event %10s %3s no picks' % (ev.name, phasename))
# extract and preprocess waveforms
tpad = 0.0
for f in self.corner_highpass, self.corner_lowpass:
if f is not None:
tpad = max(tpad, 1.0/f)
pile = self.get_pile()
waveforms = {}
for ev in events:
iev = event_to_number[ev]
markers = []
for iphasename, phasename in enumerate(phasenames):
for istation, station in enumerate(stations):
nsp = station.network, station.station, phasename
if nsp in tt:
tarr = ev.time + tt[nsp]
nslcs = [ ( station.network, station.station, '*', '*' ) ]
marker = PhaseMarker( nslcs, tarr, tarr, 1, event=ev,
phasename=phasename)
markers.append(marker)
tarr2 = tarr + tt_corr_station[iphasename, istation] + \
tt_corr_event[iphasename, iev]
marker = PhaseMarker( nslcs, tarr2, tarr2, 2, event=ev,
phasename=phasename)
markers.append(marker)
tmin = tarr2+self.tstart
tmax = tarr2+self.tend
marker = PhaseMarker( nslcs,
tmin, tmax, 3, event=ev,
phasename=phasename)
markers.append(marker)
trs = pile.all(tmin, tmax, tpad=tpad, trace_selector=
lambda tr: tr.nslc_id[:2] == nsp[:2],
want_incomplete=False)
trok = []
for tr in trs:
if num.all(tr.ydata[0] == tr.ydata):
continue
if self.corner_highpass:
tr.highpass(4, self.corner_highpass)
if self.corner_lowpass:
tr.lowpass(4, self.corner_lowpass)
tr.chop(tmin, tmax)
tr.set_location(ev.name)
#tr.shift( - (tmin - master.time) )
if num.all(num.isfinite(tr.ydata)):
trok.append(tr)
waveforms[nsp+(iev,)] = trok
self.add_markers(markers)
def get_channel(trs, cha):
for tr in trs:
if tr.channel == cha:
return tr
return None
nevents = len(events)
nstations = len(stations)
nphases = len(phasenames)
# correlate waveforms
coefs = num.zeros((nphases, nstations, nevents, nevents))
coefs.fill(num.nan)
tshifts = coefs.copy()
tshifts_picked = coefs.copy()
for iphase, phasename in enumerate(phasenames):
for istation, station in enumerate(stations):
nsp = station.network, station.station, phasename
for a in events:
ia = event_to_number[a]
for b in events:
ib = event_to_number[b]
if ia == ib:
continue
if nsp in a.picks and nsp in b.picks:
tshifts_picked[iphase,istation,ia,ib] = \
b.picks[nsp] - a.picks[nsp]
wa = waveforms[nsp+(ia,)]
wb = waveforms[nsp+(ib,)]
channels = list(set([ tr.channel for tr in wa + wb ]))
channels.sort()
tccs = []
for cha in channels:
if cha[-1] not in phases[phasename][1]:
continue
ta = get_channel(wa, cha)
tb = get_channel(wb, cha)
if ta is None or tb is None:
continue
tcc = trace.correlate(ta,tb, mode='full', normalization='normal',
use_fft=True)
tccs.append(tcc)
if not tccs:
continue
tc = None
for tcc in tccs:
if tc is None:
tc = tcc
else:
tc.add(tcc)
tc.ydata *= 1./len(tccs)
tmid = tc.tmin*0.5 + tc.tmax*0.5
tlen = (tc.tmax - tc.tmin)*0.5
tc_cut = tc.chop(tmid-tlen*0.5, tmid+tlen*0.5, inplace=False)
tshift, coef = tc_cut.max()
if (tshift < tc.tmin + 0.5*tc.deltat or
tc.tmax - 0.5*tc.deltat < tshift):
continue
coefs[iphase,istation,ia,ib] = coef
tshifts[iphase,istation,ia,ib] = tshift
if self.show_correlation_traces:
tc.shift(master.time - (tc.tmax + tc.tmin)/2.)
self.add_trace(tc)
#tshifts = tshifts_picked
coefssum_sta = num.nansum(coefs, axis=2) / num.sum(num.isfinite(coefs), axis=2)
csum_sta = num.nansum(coefssum_sta, axis=2) / num.sum(num.isfinite(coefssum_sta), axis=2)
for iphase, phasename in enumerate(phasenames):
for istation, station in enumerate(stations):
print('station %-5s %s %15.2g' %
(station.station, phasename, csum_sta[iphase,istation]))
coefssum = num.nansum(coefs, axis=1) / num.sum(num.isfinite(coefs), axis=1)
csumevent = num.nansum(coefssum, axis=2) / num.sum(num.isfinite(coefssum), axis=2)
above = num.where(num.isfinite(coefs), coefs >= self.min_corr, 0)
csumabove = num.sum(num.sum(above, axis=1), axis=2)
coefssum = num.ma.masked_invalid(coefssum)
print('correlation stats')
for iphase, phasename in enumerate(phasenames):
for ievent, event in enumerate(events):
print('event %10s %3s %8i %15.2g' % (
event.name, phasename,
csumabove[iphase,ievent], csumevent[iphase,ievent]))
# plot event correlation matrix
fframe = self.figure_frame()
fig = fframe.gcf()
for iphase, phasename in enumerate(phasenames):
p = fig.add_subplot(1,nphases,iphase+1)
p.set_xlabel('Event number')
p.set_ylabel('Event number')
mesh = p.pcolormesh(coefssum[iphase])
cb = fig.colorbar(mesh, ax=p)
cb.set_label('Max correlation coefficient')
if self.save:
fig.savefig(self.output_filename(dir='correlation.pdf'))
fig.canvas.draw()
# setup and solve linear system
data = []
rows = []
weights = []
for iphase in range(nphases):
for istation in range(nstations):
for ia in range(nevents):
for ib in range(ia+1,nevents):
k = iphase, istation, ia, ib
w = coefs[k]
if not num.isfinite(tshifts[k]) \
or not num.isfinite(w) or w < self.min_corr:
continue
row = num.zeros(nevents*4)
row[ia*4:ia*4+3] = g[iphase,istation]
row[ia*4+3] = -1.0
row[ib*4:ib*4+3] = -g[iphase,istation]
row[ib*4+3] = 1.0
weights.append(w)
rows.append(row)
data.append(tshifts[iphase,istation,ia,ib])
nsamp = len(data)
for i in range(4):
row = num.zeros(nevents*4)
row[i::4] = 1.
rows.append(row)
data.append(0.0)
if self.fix_depth:
for ievent in range(nevents):
row = num.zeros(nevents*4)
row[ievent*4+2] = 1.0
rows.append(row)
data.append(0.0)
a = num.array(rows, dtype=num.float)
d = num.array(data, dtype=num.float)
w = num.array(weights, dtype=num.float)
if self.weighting == 'equal':
w[:nsamp] = 1.0
elif self.weighting == 'linear':
pass
elif self.weighting == 'quadratic':
w[:nsamp] = w[:nsamp]**2
a[:nsamp,:] *= w[:,num.newaxis]
d[:nsamp] *= w[:nsamp]
x, residuals, rank, singular = num.linalg.lstsq(a,d)
x0 = num.zeros(nevents*4)
x0[3::4] = tevents_corr
mean_abs_residual0 = num.mean(
num.abs((num.dot(a[:nsamp], x0) - d[:nsamp])/w[:nsamp]))
mean_abs_residual = num.mean(
num.abs((num.dot(a[:nsamp],x) - d[:nsamp])/w[:nsamp]))
print(mean_abs_residual0, mean_abs_residual)
# distorted solutions
npermutations = 100
noiseamount = mean_abs_residual
xdistorteds = []
for i in range(npermutations):
dnoisy = d.copy()
dnoisy[:nsamp] += num.random.normal(size=nsamp)*noiseamount*w[:nsamp]
xdistorted, residuals, rank, singular = num.linalg.lstsq(a,dnoisy)
xdistorteds.append(xdistorted)
mean_abs_residual = num.mean(num.abs(num.dot(a,xdistorted)[:nsamp] - dnoisy[:nsamp]))
tmean = num.mean([ e.time for e in events ])
north = x[0::4]
east = x[1::4]
down = x[2::4]
etime = x[3::4] + tmean
def plot_range(x):
mi, ma = num.percentile(x, [10., 90.])
ext = (ma-mi)/5.
mi -= ext
ma += ext
return mi, ma
lat, lon = orthodrome.ne_to_latlon(master.lat, master.lon, north, east)
events_out = []
for ievent, event in enumerate(events):
event_out = model.Event(time=etime[ievent],
lat=lat[ievent],
lon=lon[ievent],
depth=down[ievent] + master_depth,
name = event.name)
mark = EventMarker(event_out, kind=4)
self.add_marker(mark)
events_out.append(event_out)
model.Event.dump_catalog(events_out, 'events.relocated.txt')
# plot results
ned_orig = []
for event in events:
n, e = orthodrome.latlon_to_ne(master, event)
d = event.depth
ned_orig.append((n,e,d))
ned_orig = num.array(ned_orig)
ned_orig[:,0] -= num.mean(ned_orig[:,0])
ned_orig[:,1] -= num.mean(ned_orig[:,1])
ned_orig[:,2] -= num.mean(ned_orig[:,2])
north0, east0, down0 = ned_orig.T
north2, east2, down2, time2 = num.hstack(xdistorteds).reshape((-1,4)).T
fframe = self.figure_frame()
fig = fframe.gcf()
color_sym = (0.1,0.1,0.0)
color_scat = (0.3,0.5,1.0,0.2)
d = u'\u0394 '
if not self.fix_depth:
p = fig.add_subplot(2,2,1, aspect=1.0)
else:
p = fig.add_subplot(1,1,1, aspect=1.0)
mi_north, ma_north = plot_range(north)
mi_east, ma_east = plot_range(east)
mi_down, ma_down = plot_range(down)
p.set_xlabel(d+'East [km]')
p.set_ylabel(d+'North [km]')
p.plot(east2/km, north2/km, '.', color=color_scat, markersize=2)
p.plot(east/km, north/km, '+', color=color_sym)
p.plot(east0/km, north0/km, 'x', color=color_sym)
p0 = p
for i,ev in enumerate(events):
p.text(east[i]/km, north[i]/km, ev.name, clip_on=True)
if not self.fix_depth:
p = fig.add_subplot(2,2,2, sharey=p0, aspect=1.0)
p.set_xlabel(d+'Depth [km]')
p.set_ylabel(d+'North [km]')
p.plot(down2/km, north2/km, '.', color=color_scat, markersize=2)
p.plot(down/km, north/km, '+', color=color_sym)
for i,ev in enumerate(events):
p.text(down[i]/km, north[i]/km, ev.name, clip_on=True)
p1 = p
p = fig.add_subplot(2,2,3, sharex=p0, aspect=1.0)
p.set_xlabel(d+'East [km]')
p.set_ylabel(d+'Depth [km]')
p.plot(east2/km, down2/km, '.', color=color_scat, markersize=2)
p.plot(east/km, down/km, '+', color=color_sym)
for i,ev in enumerate(events):
p.text(east[i]/km, down[i]/km, ev.name, clip_on=True)
p.invert_yaxis()
p2 = p
p0.set_xlim(mi_east/km, ma_east/km)
p0.set_ylim(mi_north/km, ma_north/km)
if not self.fix_depth:
p1.set_xlim(mi_down/km, ma_down/km)
p2.set_ylim(mi_down/km, ma_down/km)
if self.save:
fig.savefig(self.output_filename(dir='locations.pdf'))
fig.canvas.draw()
def __snufflings__():
return [CorrelateEvents()]