User contributed plug-ins for Pyrocko's seismic waveform browser Snuffler.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

195 lines
6.7 KiB

import numpy as num
from pyrocko.gui.snuffling import Snuffling, Param, Choice, Switch
from pyrocko import orthodrome as ortho
from pyrocko import util
def station_key(tr):
return (tr.network, tr.station, tr.location)
class TracePlotter(Snuffling):
'''
<html>
<body>
<head>
<style type="text/css">
body { margin-left:10px };
</style>
</head>
<body>
<h1 align="center">Plot Traces with Reduced Velocity</h1>
<p>
Use the <b>Reduction Velocity</b> to shift traces dependent on epicentral
distance to the activated event.
If <b>Auto-Run</b> is activated the figure is updated automatically when
modifying a value on the panel.<br>
When <b>saving a figure</b> accepted file endings are 'eps', 'png', 'jpeg',
'pdf', and 'svg'.
</body>
</html>
'''
def setup(self):
self.set_name("Plot Waveforms")
self.add_parameter(
Switch('Include Selected Markers', 'add_markers', False))
self.add_parameter(Switch('Fill positive', 'fill_between', False))
self.add_parameter(
Param(
'Reduction Velocity [km/s]',
't_red', 20., 1., 20., high_is_none=True))
self.add_parameter(Param(
'Amplitude Gain', 'yscale', 1., 0.1, 100.))
self.add_parameter(Choice(
'Pre-scale Amplitudes', 'ampl_scaler', 'trace min/max',
['total min/max', 'trace min/max', 'standard deviation']))
self.add_trigger('Save Last Figure', self.save)
self.set_live_update(False)
self.fig = None
def call(self):
self.cleanup()
viewer = self.get_viewer()
vtmin, vtmax = viewer.get_time_range()
pile = self.get_pile()
traces = [
tr for tr in pile.chopper(
tmin=vtmin, tmax=vtmax, trace_selector=viewer.trace_selector)]
event, stations = self.get_active_event_and_stations()
traces = [tr for trs in traces for tr in trs]
trace_nsls = {station_key(tr) for tr in traces}
stations = [s for s in self.get_stations() if
s.nsl() in trace_nsls]
distances = [
ortho.distance_accurate50m(event, s)/1000. for s in stations]
distances = dict(zip([s.nsl() for s in stations], distances))
4 years ago
matching_traces = [x for x in traces if util.match_nslc(
self.get_station_patterns(stations), x.nslc_id)]
if self.add_markers:
markers = self.get_markers()
markers = [
m for m in markers if m.tmax <= vtmax and
m.tmin >= vtmin and m.selected]
markers = dict(zip([tuple(m.nslc_ids) for m in markers], markers))
if self.fig is None or self.fframe.closed or not self._live_update:
self.fframe = self.pylab(get='figure_frame')
self.fig = self.fframe.gcf()
if self._live_update:
self.fig.clf()
maxd = max(distances.values())
mind = min(distances.values())
ymin = mind-0.06*(maxd-mind)
ymax = maxd+0.06*(maxd-mind)
ax = self.fig.add_subplot(111)
xmin = 9E9
xmax = -xmin
texts = []
manual_scale = 0.1 * (maxd-mind)*self.yscale
if self.ampl_scaler == 'total min/max':
max_trace = max(
matching_traces, key=lambda x: max(abs(x.get_ydata())))
tr_maxy = max(abs(max_trace.get_ydata()))
ampl_scale = float(tr_maxy)
for tr in matching_traces:
if viewer.highpass:
tr.highpass(4, viewer.highpass)
if viewer.lowpass:
tr.lowpass(4, viewer.lowpass)
if tr.nslc_id[:3] not in distances.keys():
continue
if self.t_red:
red = distances[tr.nslc_id[:3]]/self.t_red
else:
red = 0.
y_pos = distances[tr.nslc_id[:3]]
xdata = tr.get_xdata()-red-event.time
xmin = min(xmin, min(xdata))
xmax = max(xmax, max(xdata))
tr_ydata = tr.get_ydata()
if self.ampl_scaler == 'trace min/max':
ampl_scale = float(max(abs(tr_ydata)))
elif self.ampl_scaler == 'standard deviation':
ampl_scale = float(num.std(tr_ydata))
ydata = (tr_ydata/ampl_scale * manual_scale) + y_pos
ax.plot(xdata, ydata, c='black', linewidth=0.2)
if self.fill_between:
ax.fill_between(
xdata, y_pos, ydata, where=ydata > y_pos, color='black',
alpha=0.5)
texts.append(
ax.text(
xmax, y_pos, '%s.%s.%s.%s' % tr.nslc_id,
horizontalalignment='right', fontsize=6.))
if self.add_markers:
for ids, m in markers.items():
if m.match_nslc(tr.nslc_id) or ids == ():
c = m.select_color(m.color_b)
c = [ci/255. for ci in c]
t = m.tmin
x = [t-red-event.time, t-red-event.time]
y = [y_pos-(maxd-mind)*0.025, y_pos+(maxd-mind)*0.025]
ax.plot(x, y, linewidth=1, color=c)
label = m.get_label()
if not label:
label = ''
ax.text(x[1]-x[1]*0.005, y[1], label, color=c,
fontsize=6,
verticalalignment='top',
horizontalalignment='right')
for txt in texts:
txt.set_x(xmax)
vred_str = '= '+str(round(self.t_red, 2)) + 'km/s' if self.t_red \
else 'off'
ax.text(0.5, 0.01, 'time window: %s - %s | Reduction velocity %s' %
(util.tts(vtmin), util.tts(vtmax), vred_str),
verticalalignment='bottom', horizontalalignment='center',
transform=self.fig.transFigure)
ax.set_ylim([ymin, ymax])
ax.set_xlim([xmin, xmax])
ax.set_ylabel('Distance [km]')
ax.set_xlabel('(red.) Time [s]')
self.fig.canvas.draw()
def save(self):
fn = self.output_filename('Select Filename', 'snuffled_traces.png')
self.fig.savefig(fn, pad_inches=0.1, bbox_inches='tight', dpi=320)
def set_center_latlon(self):
self.lat_c, self.lon_c, self.z_c = self.center_lat_lon(
self.get_stations())
self.set_parameter('lat_c', self.lat_c)
self.set_parameter('lon_c', self.lon_c)
def get_station_patterns(self, stations):
return ['%s.%s.%s.*' % s.nsl() for s in stations]
def __snufflings__():
return [TracePlotter()]