|
|
@ -87,7 +87,7 @@ def scale_axes(ax, scale): |
|
|
|
|
|
|
|
@staticmethod |
|
|
|
def __call__(value, pos): |
|
|
|
return u'%d' % (value * scale) |
|
|
|
return '%d' % (value * scale) |
|
|
|
|
|
|
|
ax.get_xaxis().set_major_formatter(FormatScaled()) |
|
|
|
ax.get_yaxis().set_major_formatter(FormatScaled()) |
|
|
@ -252,7 +252,7 @@ def draw_sequence_figures(model, plt, misfit_cutoff=None, sort_by='misfit'): |
|
|
|
figs = [] |
|
|
|
fig = None |
|
|
|
alpha = 0.5 |
|
|
|
for ipar in xrange(npar): |
|
|
|
for ipar in range(npar): |
|
|
|
impl = ipar % (nfx * nfy) + 1 |
|
|
|
|
|
|
|
if impl == 1: |
|
|
@ -280,7 +280,7 @@ def draw_sequence_figures(model, plt, misfit_cutoff=None, sort_by='misfit'): |
|
|
|
|
|
|
|
axes.axhline(par.scaled(xref[ipar]), color='black', alpha=0.3) |
|
|
|
|
|
|
|
for idep in xrange(ndep): |
|
|
|
for idep in range(ndep): |
|
|
|
# ifz, ify, ifx = num.unravel_index(ipar, (nfz, nfy, nfx)) |
|
|
|
impl = (npar + idep) % (nfx * nfy) + 1 |
|
|
|
|
|
|
@ -363,7 +363,7 @@ def draw_jointpar_figures( |
|
|
|
xs = model.xs |
|
|
|
|
|
|
|
bounds = problem.get_parameter_bounds() + problem.get_dependant_bounds() |
|
|
|
for ipar in xrange(problem.ncombined): |
|
|
|
for ipar in range(problem.ncombined): |
|
|
|
par = problem.combined[ipar] |
|
|
|
lo, hi = bounds[ipar] |
|
|
|
if lo == hi: |
|
|
@ -407,7 +407,7 @@ def draw_jointpar_figures( |
|
|
|
|
|
|
|
smap = {} |
|
|
|
iselected = 0 |
|
|
|
for ipar in xrange(problem.ncombined): |
|
|
|
for ipar in range(problem.ncombined): |
|
|
|
par = problem.combined[ipar] |
|
|
|
if exclude and par.name in exclude or \ |
|
|
|
include and par.name not in include: |
|
|
@ -426,9 +426,9 @@ def draw_jointpar_figures( |
|
|
|
nfig = (nselected - 2) / neach + 1 |
|
|
|
|
|
|
|
figs = [] |
|
|
|
for ifig in xrange(nfig): |
|
|
|
for ifig in range(nfig): |
|
|
|
figs_row = [] |
|
|
|
for jfig in xrange(nfig): |
|
|
|
for jfig in range(nfig): |
|
|
|
if ifig >= jfig: |
|
|
|
figs_row.append(plt.figure(figsize=figsize)) |
|
|
|
else: |
|
|
@ -436,10 +436,10 @@ def draw_jointpar_figures( |
|
|
|
|
|
|
|
figs.append(figs_row) |
|
|
|
|
|
|
|
for iselected in xrange(nselected): |
|
|
|
for iselected in range(nselected): |
|
|
|
ipar = smap[iselected] |
|
|
|
ypar = problem.combined[ipar] |
|
|
|
for jselected in xrange(iselected): |
|
|
|
for jselected in range(iselected): |
|
|
|
jpar = smap[jselected] |
|
|
|
xpar = problem.combined[jpar] |
|
|
|
|
|
|
@ -819,7 +819,7 @@ def draw_bootstrap_figure(model, plt): |
|
|
|
gms_softclip = num.where(gms > 1.0, 0.1 * num.log10(gms) + 1.0, gms) |
|
|
|
|
|
|
|
ibests = [] |
|
|
|
for ibootstrap in xrange(problem.nbootstrap): |
|
|
|
for ibootstrap in range(problem.nbootstrap): |
|
|
|
bms = problem.bootstrap_misfits(model.misfits, ibootstrap) |
|
|
|
isort_bms = num.argsort(bms)[::-1] |
|
|
|
|
|
|
@ -862,7 +862,7 @@ def gather(l, key, sort=None, filter=None): |
|
|
|
d[k].append(x) |
|
|
|
|
|
|
|
if sort is not None: |
|
|
|
for v in d.itervalues(): |
|
|
|
for v in d.values(): |
|
|
|
v.sort(key=sort) |
|
|
|
|
|
|
|
return d |
|
|
@ -1266,8 +1266,8 @@ def draw_fits_figures(ds, model, plt): |
|
|
|
frame_to_target[iy, ix] = target |
|
|
|
|
|
|
|
figures = {} |
|
|
|
for iy in xrange(ny): |
|
|
|
for ix in xrange(nx): |
|
|
|
for iy in range(ny): |
|
|
|
for ix in range(nx): |
|
|
|
if (iy, ix) not in frame_to_target: |
|
|
|
continue |
|
|
|
|
|
|
@ -1457,7 +1457,7 @@ def draw_fits_figures(ds, model, plt): |
|
|
|
dist = source.distance_to(target) |
|
|
|
azi = source.azibazi_to(target)[0] |
|
|
|
infos.append(str_dist(dist)) |
|
|
|
infos.append(u'%.0f\u00B0' % azi) |
|
|
|
infos.append('%.0f\u00B0' % azi) |
|
|
|
infos.append('%.3g' % ws[itarget]) |
|
|
|
infos.append('%.3g' % gcms[itarget]) |
|
|
|
axes2.annotate( |
|
|
@ -1471,7 +1471,7 @@ def draw_fits_figures(ds, model, plt): |
|
|
|
fontsize=fontsize, |
|
|
|
fontstyle='normal') |
|
|
|
|
|
|
|
for (iyy, ixx), fig in figures.iteritems(): |
|
|
|
for (iyy, ixx), fig in figures.items(): |
|
|
|
title = '.'.join(x for x in cg if x) |
|
|
|
if len(figures) > 1: |
|
|
|
title += ' (%i/%i, %i/%i)' % (iyy + 1, nyy, ixx + 1, nxx) |
|
|
@ -1724,7 +1724,7 @@ def available_plotnames(): |
|
|
|
def plot_result(dirname, plotnames_want, |
|
|
|
save=False, formats=('pdf',), dpi=None): |
|
|
|
|
|
|
|
if isinstance(formats, basestring): |
|
|
|
if isinstance(formats, str): |
|
|
|
formats = formats.split(',') |
|
|
|
|
|
|
|
plotnames_want = set(plotnames_want) |
|
|
@ -1910,7 +1910,7 @@ class SolverPlot(object): |
|
|
|
|
|
|
|
p = num.zeros((ny, nx)) |
|
|
|
|
|
|
|
for j in [jchoice]: # xrange(self.problem.nbootstrap+1): |
|
|
|
for j in [jchoice]: # range(self.problem.nbootstrap+1): |
|
|
|
ps = core.excentricity_compensated_probabilities( |
|
|
|
xhist[chains_i[j, :], :], local_sxs[jchoice], 2.) |
|
|
|
|
|
|
@ -1922,7 +1922,7 @@ class SolverPlot(object): |
|
|
|
y = num.linspace( |
|
|
|
bounds[self.iypar][0], bounds[self.iypar][1], ny) |
|
|
|
|
|
|
|
for ichoice in xrange(chains_i.shape[1]): |
|
|
|
for ichoice in range(chains_i.shape[1]): |
|
|
|
iiter = chains_i[j, ichoice] |
|
|
|
vx = xhist[iiter, self.ixpar] |
|
|
|
vy = xhist[iiter, self.iypar] |
|
|
@ -1946,7 +1946,7 @@ class SolverPlot(object): |
|
|
|
color='black', |
|
|
|
s=msize * 0.15, alpha=0.2, edgecolors='none') |
|
|
|
|
|
|
|
for ibootstrap in xrange(self.problem.nbootstrap + 1): |
|
|
|
for ibootstrap in range(self.problem.nbootstrap + 1): |
|
|
|
|
|
|
|
iiters = chains_i[ibootstrap, :] |
|
|
|
fx = self.problem.extract(xhist[iiters, :], self.ixpar) |
|
|
|