PSGRN/PSCMP backend for Pyrocko's Green's function manager Fomosto: Code to calculate synthetic stress/strain/tilt/gravitational fields on a layered viscoelastic halfspace.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

159 lines
8.2 KiB

#=============================================================================
# This is input file of FORTRAN77 program "psgrn08" for computing responses
# (Green's functions) of a multi-layered viscoelastic halfspace to point
# dislocation sources buried at different depths. All results will be stored in
# the given directory and provide the necessary data base for the program
# "pscmp07a" for computing time-dependent deformation, geoid and gravity changes
# induced by an earthquake with extended fault planes via linear superposition.
# For more details, please read the accompanying READ.ME file.
#
# written by Rongjiang Wang
# GeoForschungsZentrum Potsdam
# e-mail: wang@gfz-potsdam.de
# phone +49 331 2881209
# fax +49 331 2881204
#
# Last modified: Potsdam, July, 2008
#
# References:
#
# (1) Wang, R., F. Lorenzo-Martín and F. Roth (2003), Computation of deformation
# induced by earthquakes in a multi-layered elastic crust - FORTRAN programs
# EDGRN/EDCMP, Computer and Geosciences, 29(2), 195-207.
# (2) Wang, R., F. Lorenzo-Martin and F. Roth (2006), PSGRN/PSCMP - a new code for
# calculating co- and post-seismic deformation, geoid and gravity changes
# based on the viscoelastic-gravitational dislocation theory, Computers and
# Geosciences, 32, 527-541. DOI:10.1016/j.cageo.2005.08.006.
# (3) Wang, R. (2005), The dislocation theory: a consistent way for including the
# gravity effect in (visco)elastic plane-earth models, Geophysical Journal
# International, 161, 191-196.
#
#################################################################
## ##
## Cylindrical coordinates (Z positive downwards!) are used. ##
## ##
## If not specified otherwise, SI Unit System is used overall! ##
## ##
#################################################################
#
#------------------------------------------------------------------------------
#
# PARAMETERS FOR SOURCE-OBSERVATION CONFIGURATIONS
# ================================================
# 1. the uniform depth of the observation points [km], switch for oceanic (0)
# or continental(1) earthquakes;
# 2. number of (horizontal) observation distances (> 1 and <= nrmax defined in
# psgglob.h), start and end distances [km], ratio (>= 1.0) between max. and
# min. sampling interval (1.0 for equidistant sampling);
# 3. number of equidistant source depths (>= 1 and <= nzsmax defined in
# psgglob.h), start and end source depths [km];
#
# r1,r2 = minimum and maximum horizontal source-observation
# distances (r2 > r1).
# zs1,zs2 = minimum and maximum source depths (zs2 >= zs1 > 0).
#
# Note that the same sampling rates dr_min and dzs will be used later by the
# program "pscmp08" for discretizing the finite source planes to a 2D grid
# of point sources.
#------------------------------------------------------------------------------
0.0 0
73 0.0 2000.0 10.0
30 1.0 59.0
#------------------------------------------------------------------------------
#
# PARAMETERS FOR TIME SAMPLING
# ============================
# 1. number of time samples (<= ntmax def. in psgglob.h) and time window [days].
#
# Note that nt (> 0) should be power of 2 (the fft-rule). If nt = 1, the
# coseismic (t = 0) changes will be computed; If nt = 2, the coseismic
# (t = 0) and steady-state (t -> infinity) changes will be computed;
# Otherwise, time series for the given time samples will be computed.
#
#------------------------------------------------------------------------------
512 46628.75
#------------------------------------------------------------------------------
#
# PARAMETERS FOR WAVENUMBER INTEGRATION
# =====================================
# 1. relative accuracy of the wave-number integration (suggested: 0.1 - 0.01)
# 2. factor (> 0 and < 1) for including influence of earth's gravity on the
# deformation field (e.g. 0/1 = without / with 100% gravity effect).
#------------------------------------------------------------------------------
0.025
1.00
#------------------------------------------------------------------------------
#
# PARAMETERS FOR OUTPUT FILES
# ===========================
#
# 1. output directory
# 2. file names for 3 displacement components (uz, ur, ut)
# 3. file names for 6 stress components (szz, srr, stt, szr, srt, stz)
# 4. file names for radial and tangential tilt components (as measured by a
# borehole tiltmeter), rigid rotation of horizontal plane, geoid and gravity
# changes (tr, tt, rot, gd, gr)
#
# Note that all file or directory names should not be longer than 80
# characters. Directory and subdirectoy names must be separated and ended
# by / (unix) or \ (dos)! All file names should be given without extensions
# that will be appended automatically by ".ep" for the explosion (inflation)
# source, ".ss" for the strike-slip source, ".ds" for the dip-slip source,
# and ".cl" for the compensated linear vector dipole source)
#
#------------------------------------------------------------------------------
'./'
'uz' 'ur' 'ut'
'szz' 'srr' 'stt' 'szr' 'srt' 'stz'
'tr' 'tt' 'rot' 'gd' 'gr'
#------------------------------------------------------------------------------
#
# GLOBAL MODEL PARAMETERS
# =======================
# 1. number of data lines of the layered model (<= lmax as defined in psgglob.h)
#
# The surface and the upper boundary of the half-space as well as the
# interfaces at which the viscoelastic parameters are continuous, are all
# defined by a single data line; All other interfaces, at which the
# viscoelastic parameters are discontinuous, are all defined by two data
# lines (upper-side and lower-side values). This input format could also be
# used for a graphic plot of the layered model. Layers which have different
# parameter values at top and bottom, will be treated as layers with a
# constant gradient, and will be discretised to a number of homogeneous
# sublayers. Errors due to the discretisation are limited within about 5%
# (changeable, see psgglob.h).
#
# 2.... parameters of the multilayered model
#
# Burgers rheology [a Kelvin-Voigt body (mu1, eta1) and a Maxwell body
# (mu2, eta2) in series connection] for relaxation of shear modulus is
# implemented. No relaxation of compressional modulus is considered.
#
# eta1 = transient viscosity (dashpot of the Kelvin-Voigt body; <= 0 means
# infinity value)
# eta2 = steady-state viscosity (dashpot of the Maxwell body; <= 0 means
# infinity value)
# alpha = ratio between the effective and the unrelaxed shear modulus
# = mu1/(mu1+mu2) (> 0 and <= 1) (unrelaxed modulus mu2 is
# derived from S wave velocity and density)
#
# Special cases:
# (1) Elastic: eta1 and eta2 <= 0 (i.e. infinity); alpha meaningless
# (2) Maxwell body: eta1 <= 0 (i.e. eta1 = infinity)
# or alpha = 1 (i.e. mu1 = infinity)
# (3) Standard-Linear-Solid: eta2 <= 0 (i.e. infinity)
# fully relaxed modulus = alpha*unrelaxed_modulus
# characteristic relaxation time = eta1*alpha/unrelaxed_modulus
#------------------------------------------------------------------------------
7 |int: no_model_lines;
#------------------------------------------------------------------------------
# no depth[km] vp[km/s] vs[km/s] rho[kg/m^3] eta1[Pa*s] eta2[Pa*s] alpha
#------------------------------------------------------------------------------
1 0.000 6.0000 3.4600 2600.0 0.0E+00 0.0E+00 1.000
2 16.000 6.0000 3.4600 2600.0 0.0E+00 0.0E+00 1.000
3 16.000 6.7000 3.8700 2800.0 0.0E+00 0.0E+00 1.000
4 30.000 6.7000 3.8700 2800.0 0.0E+00 0.0E+00 1.000
5 30.000 8.0000 4.6200 3400.0 0.0E+00 0.0E+00 1.000
6 60.000 8.0000 4.6200 3400.0 0.0E+00 0.0E+00 1.000
7 60.000 8.0000 4.6200 3400.0 0.0E+00 1.0E+19 1.000
#=======================end of input===========================================