PSGRN/PSCMP backend for Pyrocko's Green's function manager Fomosto: Code to calculate synthetic stress/strain/tilt/gravitational fields on a layered viscoelastic halfspace.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

424 lines
20 KiB

#===============================================================================
# This is input file of FORTRAN77 program "pscmp08" for modeling post-seismic
# deformation induced by earthquakes in multi-layered viscoelastic media using
# the Green's function approach. The earthquke source is represented by an
# arbitrary number of rectangular dislocation planes. For more details, please
# read the accompanying READ.ME file.
#
# written by Rongjiang Wang
# GeoForschungsZentrum Potsdam
# e-mail: wang@gfz-potsdam.de
# phone +49 331 2881209
# fax +49 331 2881204
#
# Last modified: Potsdam, July, 2008
#
#################################################################
## ##
## Green's functions should have been prepared with the ##
## program "psgrn08" before the program "pscmp08" is started. ##
## ##
## For local Cartesian coordinate system, the Aki's convention ##
## is used, that is, x is northward, y is eastward, and z is ##
## downward. ##
## ##
## If not specified otherwise, SI Unit System is used overall! ##
## ##
#################################################################
#===============================================================================
# OBSERVATION ARRAY
# =================
# 1. selection for irregular observation positions (= 0) or a 1D observation
# profile (= 1) or a rectangular 2D observation array (= 2): iposrec
#
# IF (iposrec = 0 for irregular observation positions) THEN
#
# 2. number of positions: nrec
#
# 3. coordinates of the observations: (lat(i),lon(i)), i=1,nrec
#
# ELSE IF (iposrec = 1 for regular 1D observation array) THEN
#
# 2. number of position samples of the profile: nrec
#
# 3. the start and end positions: (lat1,lon1), (lat2,lon2)
#
# ELSE IF (iposrec = 2 for rectanglular 2D observation array) THEN
#
# 2. number of x samples, start and end values: nxrec, xrec1, xrec2
#
# 3. number of y samples, start and end values: nyrec, yrec1, yrec2
#
# sequence of the positions in output data: lat(1),lon(1); ...; lat(nx),lon(1);
# lat(1),lon(2); ...; lat(nx),lon(2); ...; lat(1),lon(ny); ...; lat(nx),lon(ny).
#
# Note that the total number of observation positions (nrec or nxrec*nyrec)
# should be <= NRECMAX (see pecglob.h)!
#===============================================================================
0
180
( 31.8010, 104.4430) ( 32.1820, 104.8720) ( 31.0600, 103.6910) ( 31.4860, 104.2250) ( 32.5700, 105.2200)
( 31.3530, 104.1860) ( 31.7050, 104.4430) ( 31.0080, 103.1450) ( 32.3600, 104.8100) ( 30.9680, 103.7400)
( 30.8800, 103.6200) ( 32.4050, 104.5710) ( 31.1560, 104.4400) ( 31.4860, 104.7600) ( 31.4860, 104.7810)
( 32.0600, 103.5800) ( 31.8500, 102.6700) ( 32.0750, 103.1650) ( 30.7320, 104.0770) ( 32.0200, 105.8300)
( 32.0200, 105.8300) ( 32.3610, 103.7310) ( 31.7050, 102.3060) ( 30.6300, 104.0800) ( 32.4480, 105.8300)
( 32.4480, 105.8300) ( 30.6300, 103.6300) ( 31.4660, 102.0950) ( 31.0300, 102.4000) ( 32.5900, 103.6130)
( 31.1000, 105.1000) ( 31.8700, 105.9800) ( 31.7700, 101.6150) ( 32.8510, 103.5700) ( 30.9600, 101.8700)
( 32.7850, 102.5000) ( 33.0000, 104.6250) ( 32.9300, 103.4350) ( 30.4050, 104.5300) ( 30.3750, 104.5360)
( 32.9010, 101.7060) ( 32.8000, 105.7800) ( 31.1430, 100.9300) ( 33.4300, 105.0100) ( 30.9500, 101.1630)
( 25.3410, 100.4960) ( 25.4810, 100.5480) ( 25.6080, 103.2410) ( 25.6410, 101.9010) ( 25.7310, 101.3200)
( 26.0010, 102.5310) ( 26.0500, 101.6810) ( 26.1050, 103.1650) ( 26.5030, 101.7480) ( 26.6200, 102.6100)
( 26.6900, 102.2630) ( 26.6900, 101.8550) ( 26.9310, 102.9060) ( 27.0480, 101.9580) ( 27.1380, 100.9330)
( 27.4200, 101.5130) ( 27.4530, 102.1880) ( 27.5400, 101.7100) ( 27.6560, 101.2380) ( 27.7480, 100.6530)
( 27.8750, 102.2310) ( 28.3000, 102.4360) ( 28.5150, 102.1250) ( 28.9630, 101.5180) ( 29.2280, 103.2610)
( 29.6000, 103.8000) ( 29.6880, 102.0800) ( 29.7900, 102.8160) ( 29.8460, 101.5580) ( 29.8480, 102.2900)
( 30.0410, 103.8450) ( 30.0730, 101.7880) ( 30.0750, 101.4850) ( 30.1060, 101.0230) ( 30.2510, 102.8400)
( 30.4150, 103.4100) ( 30.4950, 101.4960) ( 30.5000, 105.7800) ( 30.8000, 106.2000) ( 34.4030, 104.0730)
( 32.8000, 106.1800) ( 32.8500, 107.1700) ( 33.1000, 106.3300) ( 33.1160, 106.6800) ( 33.1900, 106.5800)
( 33.2280, 104.2250) ( 33.2760, 103.8880) ( 33.3400, 105.8050) ( 33.3400, 106.1550) ( 33.4000, 105.6280)
( 33.4230, 104.8230) ( 33.5710, 102.9910) ( 33.6960, 105.5950) ( 33.6960, 105.5950) ( 33.7800, 105.2850)
( 33.7860, 104.4010) ( 33.8910, 105.8150) ( 33.9150, 106.5080) ( 33.9360, 103.7260) ( 34.0000, 104.4200)
( 34.0200, 105.3000) ( 34.0460, 104.3830) ( 34.1080, 105.3060) ( 34.1080, 103.1460) ( 34.2510, 105.8110)
( 34.3600, 104.5000) ( 34.3600, 104.8300) ( 34.4660, 104.9150) ( 34.5000, 105.8600) ( 34.5510, 108.9130)
( 34.5930, 105.6960) ( 34.7130, 104.9400) ( 34.7480, 106.1580) ( 34.8500, 104.4800) ( 34.8710, 105.6550)
( 35.1410, 105.3780) ( 35.1730, 106.0110) ( 34.7930, 105.3680) ( 35.0380, 104.1050) ( 26.6760, 101.2450)
( 27.3700, 102.5480) ( 33.9100, 106.2300) ( 26.6650, 100.7560) ( 29.2630, 102.4380) ( 28.9580, 103.8930)
( 26.8260, 102.1000) ( 34.5150, 106.4000) ( 25.5760, 102.5050) ( 26.2110, 100.5960) ( 35.0050, 106.2060)
( 29.6010, 103.4680) ( 25.7980, 102.9410) ( 30.1200, 103.1000) ( 35.0800, 105.7950) ( 34.4960, 108.2330)
( 25.7960, 100.5600) ( 28.7700, 104.6000) ( 34.9460, 106.6780) ( 34.4330, 107.5800) ( 35.0580, 108.0860)
( 28.9550, 102.7660) ( 34.0700, 107.6400) ( 34.9730, 108.9980) ( 35.0460, 104.5410) ( 29.9750, 103.0030)
( 28.2500, 103.6400) ( 29.9750, 103.0030) ( 34.1100, 108.1560) ( 27.6930, 102.7900) ( 34.8950, 106.8210)
( 28.6710, 102.5310) ( 26.4050, 103.2260) ( 27.9980, 102.8330) ( 33.8800, 109.9230) ( 25.0360, 100.5210)
( 34.4260, 107.1430) ( 34.0880, 107.2950) ( 34.4710, 107.3780) ( 34.7200, 104.3800) ( 27.7700, 103.8910)
( 33.6160, 106.9250) ( 34.3010, 108.1950) ( 34.3460, 109.9680) ( 31.0000, 107.1000) ( 34.9500, 109.9700)
( 27.3560, 103.6860) ( 34.4600, 109.7060) ( 27.6830, 103.2680) ( 28.8430, 103.5260) ( 34.0500, 108.9080)
( 28.6050, 103.9780) ( 29.3480, 102.6550) ( 33.5400, 107.9800) ( 33.5000, 109.2000) ( 28.3110, 103.1210)
#
# 1
# 51
# (0.0, -100.0), (0.0, 400.0)0
#
# 2
# 101 30.59521 31.92271
# 101 103.49411 105.00661
#===============================================================================
# OUTPUTS
# =======
#
# 1. select (1/0) output for los displacement (only for snapshots, see below),
# x, y, and z-cosines to the INSAR orbit: insar, xlos, ylos, zlos
#
# if this option is selected, the snapshots will include additional data:
# LOS_Dsp = los displacement to the given satellite orbit.
#
# 2. select (1/0) output for Coulomb stress changes (only for snapshots, see
# below): icmb, friction, Skempton ratio, strike, dip, and rake angles [deg]
# describing the uniform regional master fault mechanism, the uniform regional
# principal stresses: sigma1, sigma2 and sigma3 [Pa] in arbitrary order (the
# orietation of the pre-stress field will be derived by assuming that the
# master fault is optimally oriented according to Coulomb failure criterion)
#
# if this option is selected (icmb = 1), the snapshots will include additional
# data:
# CMB_Fix, Sig_Fix = Coulomb and normal stress changes on master fault;
# CMB_Op1/2, Sig_Op1/2 = Coulomb and normal stress changes on the two optimally
# oriented faults;
# Str_Op1/2, Dip_Op1/2, Slp_Op1/2 = strike, dip and rake angles of the two
# optimally oriented faults.
#
# Note: the 1. optimally orieted fault is the one closest to the master fault.
#
# 3. output directory in char format: outdir
#
# 4. select outputs for displacement components (1/0 = yes/no): itout(i), i=1,3
#
# 5. the file names in char format for the x, y, and z components:
# toutfile(i), i=1,3
#
# 6. select outputs for stress components (1/0 = yes/no): itout(i), i=4,9
#
# 7. the file names in char format for the xx, yy, zz, xy, yz, and zx components:
# toutfile(i), i=4,9
#
# 8. select outputs for vertical NS and EW tilt components, block rotation, geoid
# and gravity changes (1/0 = yes/no): itout(i), i=10,14
#
# 9. the file names in char format for the NS tilt (positive if borehole top
# tilts to north), EW tilt (positive if borehole top tilts to east), block
# rotation (clockwise positive), geoid and gravity changes: toutfile(i), i=10,14
#
# Note that all above outputs are time series with the time window as same
# as used for the Green's functions
#
#10. number of scenario outputs ("snapshots": spatial distribution of all above
# observables at given time points; <= NSCENMAX (see pscglob.h): nsc
#
#11. the time [day], and file name (in char format) for the 1. snapshot;
#12. the time [day], and file name (in char format) for the 2. snapshot;
#13. ...
#
# Note that all file or directory names should not be longer than 80
# characters. Directories must be ended by / (unix) or \ (dos)!
#===============================================================================
0 -0.072 0.408 -0.910
0
'./'
0 0 0
'ux.dat' 'uy.dat' 'uz.dat'
0 0 0 0 0 0
'sxx.dat' 'syy.dat' 'szz.dat' 'sxy.dat' 'syz.dat' 'szx.dat'
0 0 0 0 0
'tx.dat' 'ty.dat' 'rot.dat' 'gd.dat' 'gr.dat'
1
0.00 'coseis-gps.dat' |0 co-seismic
#===============================================================================
#
# GREEN'S FUNCTION DATABASE
# =========================
# 1. directory where the Green's functions are stored: grndir
#
# 2. file names (without extensions!) for the 13 Green's functions:
# 3 displacement komponents (uz, ur, ut): green(i), i=1,3
# 6 stress components (szz, srr, stt, szr, srt, stz): green(i), i=4,9
# radial and tangential components measured by a borehole tiltmeter,
# rigid rotation around z-axis, geoid and gravity changes (tr, tt, rot, gd, gr):
# green(i), i=10,14
#
# Note that all file or directory names should not be longer than 80
# characters. Directories must be ended by / (unix) or \ (dos)! The
# extensions of the file names will be automatically considered. They
# are ".ep", ".ss", ".ds" and ".cl" denoting the explosion (inflation)
# strike-slip, the dip-slip and the compensated linear vector dipole
# sources, respectively.
#
#===============================================================================
'..\wcpsgrnfcts\'
'uz' 'ur' 'ut'
'szz' 'srr' 'stt' 'szr' 'srt' 'stz'
'tr' 'tt' 'rot' 'gd' 'gr'
#===============================================================================
# RECTANGULAR SUBFAULTS
# =====================
# 1. number of subfaults (<= NSMAX in pscglob.h), latitude [deg] and east
# longitude [deg] of the regional reference point as origin of the Cartesian
# coordinate system: ns, lat0, lon0
#
# 2. parameters for the 1. rectangular subfault: geographic coordinates
# (O_lat, O_lon) [deg] and O_depth [km] of the local reference point on
# the present fault plane, length (along strike) [km] and width (along down
# dip) [km], strike [deg], dip [deg], number of equi-size fault
# patches along the strike (np_st) and along the dip (np_di) (total number of
# fault patches = np_st x np_di), and the start time of the rupture; the
# following data lines describe the slip distribution on the present sub-
# fault:
#
# pos_s[km] pos_d[km] slip_along_strike[m] slip_along_dip[m] opening[m]
#
# where (pos_s,pos_d) defines the position of the center of each patch in
# the local coordinate system with the origin at the reference point:
# pos_s = distance along the length (positive in the strike direction)
# pos_d = distance along the width (positive in the down-dip direction)
#
#
# 3. ... for the 2. subfault ...
# ...
# N
# /
# /| strike
# +------------------------
# |\ p . \ W
# :-\ i . \ i
# | \ l . \ d
# :90 \ S . \ t
# |-dip\ . \ h
# : \. | rake \
# Z -------------------------
# L e n g t h
#
# Note that a point inflation can be simulated by three point openning
# faults (each causes a third part of the volume of the point inflation)
# with orientation orthogonal to each other. the results obtained should
# be multiplied by a scaling factor 3(1-nu)/(1+nu), where nu is the Poisson
# ratio at the source. The scaling factor is the ratio of the seismic
# moment (energy) of an inflation source to that of a tensile source inducing
# a plate openning with the same volume change.
#===============================================================================
# n_faults (Slip model by Ji Chen, USGS)
#-------------------------------------------------------------------------------
1
#-------------------------------------------------------------------------------
# n O_lat O_lon O_depth length width strike dip np_st np_di start_time
# [-] [deg] [deg] [km] [km] [km] [deg] [deg] [-] [-] [day]
# pos_s pos_d slp_stk slp_dip open
# [km] [km] [m] [m] [m]
#-------------------------------------------------------------------------------
1 32.5224 105.4260 0.7411 315.00 40.00 229.00 33.00 21 8 0.00
7.50 2.50 0.00 0.00 0.00
22.50 2.50 0.57 -0.11 0.00
37.50 2.50 1.18 -0.38 0.00
52.50 2.50 0.85 -0.03 0.00
67.50 2.50 -0.03 -0.27 0.00
82.50 2.50 -0.54 -0.47 0.00
97.50 2.50 -0.37 -1.16 0.00
112.50 2.50 0.53 -1.68 0.00
127.50 2.50 0.50 -2.67 0.00
142.50 2.50 1.02 -2.57 0.00
157.50 2.50 0.21 -2.18 0.00
172.50 2.50 -0.82 -1.52 0.00
187.50 2.50 -1.47 -1.12 0.00
202.50 2.50 -2.24 -0.75 0.00
217.50 2.50 -2.58 -0.78 0.00
232.50 2.50 -2.00 -1.33 0.00
247.50 2.50 -1.01 -0.17 0.00
262.50 2.50 0.15 -0.15 0.00
277.50 2.50 0.48 -1.60 0.00
292.50 2.50 0.75 -1.34 0.00
307.50 2.50 -0.03 -0.04 0.00
7.50 7.50 -0.01 0.00 0.00
22.50 7.50 1.12 -0.07 0.00
37.50 7.50 1.06 -0.02 0.00
52.50 7.50 0.21 -0.25 0.00
67.50 7.50 -1.35 -0.60 0.00
82.50 7.50 -1.55 -1.04 0.00
97.50 7.50 -0.89 -2.67 0.00
112.50 7.50 -0.47 -3.92 0.00
127.50 7.50 -0.52 -5.11 0.00
142.50 7.50 0.33 -4.93 0.00
157.50 7.50 -0.03 -3.99 0.00
172.50 7.50 -1.25 -2.75 0.00
187.50 7.50 -2.64 -2.56 0.00
202.50 7.50 -4.41 -2.49 0.00
217.50 7.50 -5.55 -2.88 0.00
232.50 7.50 -4.60 -2.46 0.00
247.50 7.50 -2.85 -0.35 0.00
262.50 7.50 -0.42 -0.11 0.00
277.50 7.50 0.44 -0.89 0.00
292.50 7.50 0.61 -1.69 0.00
307.50 7.50 0.00 -0.08 0.00
7.50 12.50 -0.01 -0.04 0.00
22.50 12.50 0.63 -0.05 0.00
37.50 12.50 -0.06 -0.15 0.00
52.50 12.50 -2.17 -0.51 0.00
67.50 12.50 -4.15 -1.11 0.00
82.50 12.50 -3.91 -2.45 0.00
97.50 12.50 -2.88 -3.56 0.00
112.50 12.50 -2.43 -4.50 0.00
127.50 12.50 -2.12 -5.64 0.00
142.50 12.50 -1.30 -5.64 0.00
157.50 12.50 -2.00 -4.71 0.00
172.50 12.50 -3.09 -3.88 0.00
187.50 12.50 -3.95 -3.60 0.00
202.50 12.50 -6.18 -4.41 0.00
217.50 12.50 -7.78 -5.01 0.00
232.50 12.50 -6.52 -3.60 0.00
247.50 12.50 -4.02 -0.88 0.00
262.50 12.50 -1.76 -0.11 0.00
277.50 12.50 -0.84 -0.36 0.00
292.50 12.50 -0.47 -1.87 0.00
307.50 12.50 0.07 -0.06 0.00
7.50 17.50 0.02 -0.01 0.00
22.50 17.50 0.31 -0.15 0.00
37.50 17.50 -1.47 -0.02 0.00
52.50 17.50 -4.91 -0.14 0.00
67.50 17.50 -7.21 -1.25 0.00
82.50 17.50 -7.52 -1.88 0.00
97.50 17.50 -5.79 -1.79 0.00
112.50 17.50 -4.80 -2.79 0.00
127.50 17.50 -3.92 -3.21 0.00
142.50 17.50 -3.71 -4.62 0.00
157.50 17.50 -3.70 -4.03 0.00
172.50 17.50 -4.29 -2.87 0.00
187.50 17.50 -4.69 -2.63 0.00
202.50 17.50 -6.46 -4.26 0.00
217.50 17.50 -7.50 -5.18 0.00
232.50 17.50 -6.14 -4.57 0.00
247.50 17.50 -4.25 -2.55 0.00
262.50 17.50 -1.55 -1.43 0.00
277.50 17.50 -1.39 -1.01 0.00
292.50 17.50 -1.11 -2.57 0.00
307.50 17.50 0.00 0.00 0.00
7.50 22.50 0.02 -0.01 0.00
22.50 22.50 0.28 -0.04 0.00
37.50 22.50 -0.63 -0.06 0.00
52.50 22.50 -5.03 -0.24 0.00
67.50 22.50 -7.51 -2.18 0.00
82.50 22.50 -8.91 -2.61 0.00
97.50 22.50 -7.24 -1.05 0.00
112.50 22.50 -5.72 -1.23 0.00
127.50 22.50 -5.06 -1.17 0.00
142.50 22.50 -4.42 -2.54 0.00
157.50 22.50 -4.19 -2.16 0.00
172.50 22.50 -4.29 -0.89 0.00
187.50 22.50 -4.80 -1.75 0.00
202.50 22.50 -5.11 -3.93 0.00
217.50 22.50 -4.98 -5.16 0.00
232.50 22.50 -4.69 -5.14 0.00
247.50 22.50 -3.12 -3.77 0.00
262.50 22.50 -1.31 -2.97 0.00
277.50 22.50 -1.59 -2.25 0.00
292.50 22.50 -1.59 -3.28 0.00
307.50 22.50 -0.02 -0.01 0.00
7.50 27.50 -0.03 -0.03 0.00
22.50 27.50 0.09 -0.08 0.00
37.50 27.50 -0.66 -0.09 0.00
52.50 27.50 -4.27 -0.07 0.00
67.50 27.50 -6.66 -1.32 0.00
82.50 27.50 -7.54 -2.60 0.00
97.50 27.50 -5.74 -1.71 0.00
112.50 27.50 -4.45 -0.63 0.00
127.50 27.50 -3.16 -0.12 0.00
142.50 27.50 -3.12 -1.20 0.00
157.50 27.50 -2.97 -1.41 0.00
172.50 27.50 -2.52 -0.45 0.00
187.50 27.50 -2.48 -1.17 0.00
202.50 27.50 -2.36 -2.49 0.00
217.50 27.50 -2.47 -4.33 0.00
232.50 27.50 -2.12 -4.76 0.00
247.50 27.50 -0.98 -3.36 0.00
262.50 27.50 -0.45 -2.94 0.00
277.50 27.50 -0.74 -3.59 0.00
292.50 27.50 -2.06 -3.60 0.00
307.50 27.50 -0.03 -0.04 0.00
7.50 32.50 0.01 -0.04 0.00
22.50 32.50 -0.15 0.00 0.00
37.50 32.50 0.00 -0.01 0.00
52.50 32.50 -2.19 -0.01 0.00
67.50 32.50 -3.58 -0.08 0.00
82.50 32.50 -3.91 -1.27 0.00
97.50 32.50 -2.45 -0.84 0.00
112.50 32.50 -1.61 -0.39 0.00
127.50 32.50 -0.92 -0.12 0.00
142.50 32.50 -1.02 -0.17 0.00
157.50 32.50 -1.08 -0.55 0.00
172.50 32.50 -0.45 -0.24 0.00
187.50 32.50 -0.22 -0.05 0.00
202.50 32.50 -0.68 -0.76 0.00
217.50 32.50 -1.37 -2.36 0.00
232.50 32.50 -1.23 -2.35 0.00
247.50 32.50 -0.19 -1.36 0.00
262.50 32.50 -0.08 -1.38 0.00
277.50 32.50 -0.29 -2.50 0.00
292.50 32.50 -1.82 -2.41 0.00
307.50 32.50 -0.02 -0.05 0.00
7.50 37.50 0.06 -0.03 0.00
22.50 37.50 0.04 -0.03 0.00
37.50 37.50 0.01 -0.04 0.00
52.50 37.50 -0.02 -0.02 0.00
67.50 37.50 -0.03 -0.01 0.00
82.50 37.50 -0.01 -0.04 0.00
97.50 37.50 -0.02 -0.05 0.00
112.50 37.50 -0.05 -0.07 0.00
127.50 37.50 0.05 -0.01 0.00
142.50 37.50 -0.03 -0.01 0.00
157.50 37.50 0.03 -0.09 0.00
172.50 37.50 0.03 -0.02 0.00
187.50 37.50 0.06 -0.04 0.00
202.50 37.50 0.07 -0.03 0.00
217.50 37.50 0.00 -0.01 0.00
232.50 37.50 -0.04 -0.04 0.00
247.50 37.50 0.04 -0.08 0.00
262.50 37.50 0.00 -0.04 0.00
277.50 37.50 -0.03 0.00 0.00
292.50 37.50 -0.06 -0.02 0.00
307.50 37.50 0.09 -0.02 0.00
#================================end of input===================================