#=============================================================================

# This is input file of FORTRAN77 program "psgrn08" for computing responses

# (Green's functions) of a multi-layered viscoelastic halfspace to point

# dislocation sources buried at different depths. All results will be stored in

# the given directory and provide the necessary data base for the program

# "pscmp07a" for computing time-dependent deformation, geoid and gravity changes

# induced by an earthquake with extended fault planes via linear superposition.

# For more details, please read the accompanying READ.ME file.

#

# written by Rongjiang Wang

# GeoForschungsZentrum Potsdam

# e-mail: wang@gfz-potsdam.de

# phone +49 331 2881209

# fax +49 331 2881204

#

# Last modified: Potsdam, July, 2008

#

# References:

#

# (1) Wang, R., F. Lorenzo-Mart<EFBFBD> n and F. Roth (2003), Computation of deformation

# induced by earthquakes in a multi-layered elastic crust - FORTRAN programs

# EDGRN/EDCMP, Computer and Geosciences, 29(2), 195-207.

# (2) Wang, R., F. Lorenzo-Martin and F. Roth (2006), PSGRN/PSCMP - a new code for

# calculating co- and post-seismic deformation, geoid and gravity changes

# based on the viscoelastic-gravitational dislocation theory, Computers and

# Geosciences, 32, 527-541. DOI:10.1016/j.cageo.2005.08.006.

# (3) Wang, R. (2005), The dislocation theory: a consistent way for including the

# gravity effect in (visco)elastic plane-earth models, Geophysical Journal

# International, 161, 191-196.

#

#################################################################

## ##

## Cylindrical coordinates (Z positive downwards!) are used. ##

## ##

## If not specified otherwise, SI Unit System is used overall! ##

## ##

#################################################################

#

#------------------------------------------------------------------------------

#

# PARAMETERS FOR SOURCE-OBSERVATION CONFIGURATIONS

# ================================================

# 1. the uniform depth of the observation points [km], switch for oceanic (0)

# or continental(1) earthquakes;

# 2. number of (horizontal) observation distances (> 1 and <= nrmax defined in

# psgglob.h), start and end distances [km], ratio (>= 1.0) between max. and

# min. sampling interval (1.0 for equidistant sampling);

# 3. number of equidistant source depths (>= 1 and <= nzsmax defined in

# psgglob.h), start and end source depths [km];

#

# r1,r2 = minimum and maximum horizontal source-observation

# distances (r2 > r1).

# zs1,zs2 = minimum and maximum source depths (zs2 >= zs1 > 0).

#

# Note that the same sampling rates dr_min and dzs will be used later by the

# program "pscmp08" for discretizing the finite source planes to a 2D grid

# of point sources.

#------------------------------------------------------------------------------

0.0 0

73 0.0 2000.0 10.0

30 1.0 59.0

#------------------------------------------------------------------------------

#

# PARAMETERS FOR TIME SAMPLING

# ============================

# 1. number of time samples (<= ntmax def. in psgglob.h) and time window [days].

#

# Note that nt (> 0) should be power of 2 (the fft-rule). If nt = 1, the

# coseismic (t = 0) changes will be computed; If nt = 2, the coseismic

# (t = 0) and steady-state (t -> infinity) changes will be computed;

# Otherwise, time series for the given time samples will be computed.

#

#------------------------------------------------------------------------------

512 46628.75

#------------------------------------------------------------------------------

#

# PARAMETERS FOR WAVENUMBER INTEGRATION

# =====================================

# 1. relative accuracy of the wave-number integration (suggested: 0.1 - 0.01)

# 2. factor (> 0 and < 1) for including influence of earth's gravity on the

# deformation field (e.g. 0/1 = without / with 100% gravity effect).

#------------------------------------------------------------------------------

0.025

1.00

#------------------------------------------------------------------------------

#

# PARAMETERS FOR OUTPUT FILES

# ===========================

#

# 1. output directory

# 2. file names for 3 displacement components (uz, ur, ut)

# 3. file names for 6 stress components (szz, srr, stt, szr, srt, stz)

# 4. file names for radial and tangential tilt components (as measured by a

# borehole tiltmeter), rigid rotation of horizontal plane, geoid and gravity

# changes (tr, tt, rot, gd, gr)

#

# Note that all file or directory names should not be longer than 80

# characters. Directory and subdirectoy names must be separated and ended

# by / (unix) or \ (dos)! All file names should be given without extensions

# that will be appended automatically by ".ep" for the explosion (inflation)

# source, ".ss" for the strike-slip source, ".ds" for the dip-slip source,

# and ".cl" for the compensated linear vector dipole source)

#

#------------------------------------------------------------------------------

'./'

'uz' 'ur' 'ut'

'szz' 'srr' 'stt' 'szr' 'srt' 'stz'

'tr' 'tt' 'rot' 'gd' 'gr'

#------------------------------------------------------------------------------

#

# GLOBAL MODEL PARAMETERS

# =======================

# 1. number of data lines of the layered model (<= lmax as defined in psgglob.h)

#

# The surface and the upper boundary of the half-space as well as the

# interfaces at which the viscoelastic parameters are continuous, are all

# defined by a single data line; All other interfaces, at which the

# viscoelastic parameters are discontinuous, are all defined by two data

# lines (upper-side and lower-side values). This input format could also be

# used for a graphic plot of the layered model. Layers which have different

# parameter values at top and bottom, will be treated as layers with a

# constant gradient, and will be discretised to a number of homogeneous

# sublayers. Errors due to the discretisation are limited within about 5%

# (changeable, see psgglob.h).

#

# 2.... parameters of the multilayered model

#

# Burgers rheology [a Kelvin-Voigt body (mu1, eta1) and a Maxwell body

# (mu2, eta2) in series connection] for relaxation of shear modulus is

# implemented. No relaxation of compressional modulus is considered.

#

# eta1 = transient viscosity (dashpot of the Kelvin-Voigt body; <= 0 means

# infinity value)

# eta2 = steady-state viscosity (dashpot of the Maxwell body; <= 0 means

# infinity value)

# alpha = ratio between the effective and the unrelaxed shear modulus

# = mu1/(mu1+mu2) (> 0 and <= 1) (unrelaxed modulus mu2 is

# derived from S wave velocity and density)

#

# Special cases:

# (1) Elastic: eta1 and eta2 <= 0 (i.e. infinity); alpha meaningless

# (2) Maxwell body: eta1 <= 0 (i.e. eta1 = infinity)

# or alpha = 1 (i.e. mu1 = infinity)

# (3) Standard-Linear-Solid: eta2 <= 0 (i.e. infinity)

# fully relaxed modulus = alpha*unrelaxed_modulus

# characteristic relaxation time = eta1*alpha/unrelaxed_modulus

#------------------------------------------------------------------------------

7 |int: no_model_lines;

#------------------------------------------------------------------------------

# no depth[km] vp[km/s] vs[km/s] rho[kg/m^3] eta1[Pa*s] eta2[Pa*s] alpha

#------------------------------------------------------------------------------

1 0.000 6.0000 3.4600 2600.0 0.0E+00 0.0E+00 1.000

2 16.000 6.0000 3.4600 2600.0 0.0E+00 0.0E+00 1.000

3 16.000 6.7000 3.8700 2800.0 0.0E+00 0.0E+00 1.000

4 30.000 6.7000 3.8700 2800.0 0.0E+00 0.0E+00 1.000

5 30.000 8.0000 4.6200 3400.0 0.0E+00 0.0E+00 1.000

6 60.000 8.0000 4.6200 3400.0 0.0E+00 0.0E+00 1.000

7 60.000 8.0000 4.6200 3400.0 0.0E+00 1.0E+19 1.000

#=======================end of input===========================================